🖥️
DE Zoomcamp Notes
Linkedin | Kayla TinkerGithub | Tinker0425Blog | From Clouds to CodeBlueSky | Cloudy Blue Wave
  • Welcome - Data Engineering Zoomcamp 2025 Notes
  • INTRODUCTION
    • Introduction & Set Up
      • Virtual Environments
  • MODULE 1
    • Introduction to Module 1
    • 1.1 - Google Cloud Platform GCP
      • 1.1.1 - Introduction to Google Cloud Platform
    • 1.2 - Docker & Docker-compose
      • 1.2.1 - Introduction to Docker
      • 1.2.2 - Ingesting NY Taxi Data to Postgres
      • 1.2.3 - Connecting pgAdmin and Postgres
      • 1.2.4 - Dockerizing the Ingestion Script
      • 1.2.5 - Running Postgres and pgAdmin with Docker-Compose
      • Docker-Compose Summary
      • 1.2.6 - SQL Refresher
      • Optional Docker Video
    • 1.3 - Setting up infrastructure on GCP with Terraform
      • 1.3.1 - Terraform Primer
      • 1.3.2 - Terraform Basics
      • 1.3.3 - Terraform Variables
    • Homework
  • Module 2
    • Introduction to Module 2
    • 2.1 - Introduction to Orchestration and Kestra
      • 2.1.1 - Workflow Orchestration Introduction
      • 2.1.2 - Learn Kestra
    • 2.2 - ETL Pipelines in Kestra: Detailed Walkthrough
      • 2.2.1 - Create an ETL Pipeline with Postgres in Kestra
      • 2.2.2 - Manage Scheduling and Backfills using Postgres in Kestra
      • 2.2.3 - Transform Data with dbt and Postgres in Kestra
    • 2.3 - ETL Pipelines in Kestra: Google Cloud Platform
      • 2.3.1 - Create an ETL Pipeline with GCS and BigQuery in Kestra
      • 2.3.2 - Manage Scheduling and Backfills using BigQuery in Kestra
      • 2.3.3 - Transform Data with dbt and BigQuery in Kestra
    • Bonus: Deploy to the Cloud
    • Homework
  • Module 3
    • Introduction to Module 3
    • 3.1 - Data Warehouse, Partitioning and Clustering
      • 3.1.1 - Data Warehouse and BigQuery
      • 3.1.2 - Partitioning and Clustering
    • 3.2 - BigQuery Internals and Best Practices
      • 3.2.1 - BigQuery Best Practices
      • 3.2.2 - Internals of Big Query
    • 3.3 - Machine Learning
      • 3.3.1 - BigQuery Machine Learning
      • 3.3.2 - BigQuery Machine Learning Deployment
    • Homework
  • Workshop
    • Workshop Week
    • Homework
  • Module 4
    • Introduction to Module 4
    • 4.1 - DBT the basics
      • 4.1.1 - Analytics Engineering Basics
      • 4.1.2 - What is dbt?
    • 4.2 - Creating your Project
      • 4.2.1 - Set Up Project
      • 4.2.2 - Start Your dbt Project BigQuery and dbt Cloud
      • 4.2.3 - Build the First dbt Models
      • 4.2.4 - Testing and Documenting the Project
    • 4.3 - Deployment & Visualizations
      • 4.3.1 - Deployment Using dbt Cloud
      • 4.3.2 - Visualising the data with Google Data Studio
    • Homework
  • Module 5
    • Introduction to Module 5
    • 5.1 - Install & Intro
      • 5.1.1 - Install
      • 5.1.2 - Intro to Batch Processing
      • 5.1.3 - Intro to Spark
    • 5.2 - Spark SQL and DataFrames
      • 5.2.1 - Spark & PySpark
      • 5.2.2 - Spark Dataframes
      • 5.2.3 - SQL with Spark
    • 5.3 - Spark Internals
      • 5.3.1 - Anatomy of a Spark Cluster
      • 5.3.2 - GroupBy in Spark
      • 5.3.3 - Joins in Spark
    • 5.4 - Running Spark in the Cloud
      • 5.4.1 - Connecting to Google Cloud Storage
      • 5.4.2 - Creating a Local Spark Cluster
      • 5.4.3 - Setting up a Dataproc Cluster
      • 5.4.4 - Connecting Spark to Big Query
    • Homework
  • Module 6
    • Introduction to Module 6
    • 6.1 - Stream Processing
      • 6.1.1 - Introduction
      • 6.1.2 - Intro to stream processing
      • 6.1.3 - What is Kafka?
      • 6.1.4 - Confluent cloud
      • 6.1.5 - Kafka producer consumer
      • 6.1.6 - Kafka configuration
    • Homework
  • Final Project
    • Final Project
    • How To!
      • 1 - Create a Google Cloud Project
      • 2 - API Key and Access Token Setup
      • 3 - Fork This Repo in Github
      • Ready to Run!
    • THE END
Powered by GitBook

Connect

  • Linkedin | Kayla Tinker
  • BlueSky | Cloudy Blue Wave
  • Blog | From Clouds to Code
  • Github | Tinker0425
On this page
  1. Module 2
  2. 2.2 - ETL Pipelines in Kestra: Detailed Walkthrough

2.2.2 - Manage Scheduling and Backfills using Postgres in Kestra

Last updated Jan 29, 2025

Previous2.2.1 - Create an ETL Pipeline with Postgres in KestraNext2.2.3 - Transform Data with dbt and Postgres in Kestra

Last updated 4 months ago

Youtube Video | ~7 min

If you stopped from the last video, be sure to restart Docker and open Kestra

This video does not go through writing the script, so you will need to grab it from the repo.

I was then able to create a new server connection on pgAdmin using:

The full script provided, shows that the 'triggers' will be the first of each month and they two datasets will be loaded it an hour apart from each other. But, how do we backfill the data from the past? Well once we have this script saved on Kestra, we can go to the 'Triggers' tab and there is a 'Backckfill Executions' that should be highlighted in purple. Click that:

Be sure to backfill a few months for BOTH yellow and green taxi to prepare for the next video

I was having issues in the next video that talks about dbt, so I updated my docker-compose.yml. ALSO have your docker-compose.yml live outside of a sub-directory and in your main directory, because you want to run the same one in each of the upcoming videos. See those files used here

NOTE the difference between _and -

Once your execution is complete, you should now see the months you backfilled in pgAdmin

❗
❗
✅
Page cover image
Showing what elements to fill out for Backfill execution
https://github.com/Tinker0425/de-zoomcamp-my-work/tree/master/module-02/video_4